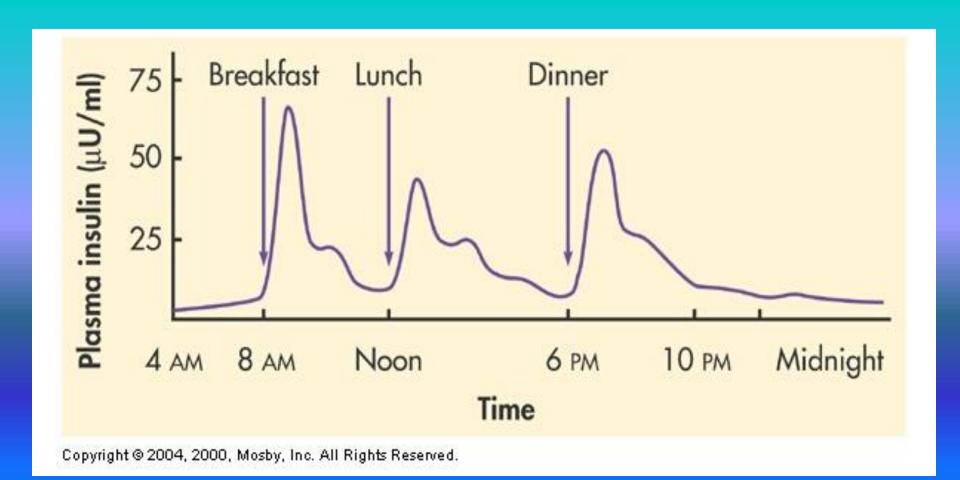

University of THi-Qar College of Nursing

Prepared By:

د . قاسم علي العمري

Diabetes Mellitus


Definition

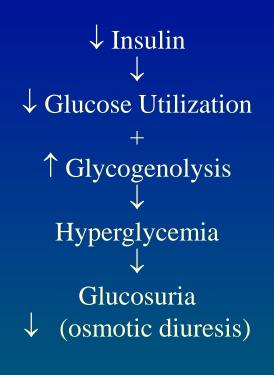
- A multisystem disease related to:
 - □Abnormal insulin production, or
 - □Impaired insulin utilization, or
 - **□**Both of the above
- Leading cause of heart disease, stroke, adult blindness, and non-traumatic lower limb amputations

Insulin

- **Produced by the β cells in the islets of Langherans of the pancreas**
- □ Facilitates normal glucose range of 3.9
 - -6.7 mmol/L

Insulin Secretion

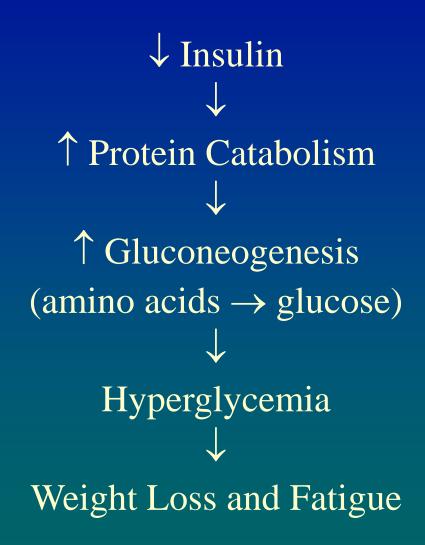
- □Promotes glucose transport from the bloodstream across the cell membrane to the cytoplasm of the cell
- □Analogous to a "key" that unlocks the cell door to allow glucose in

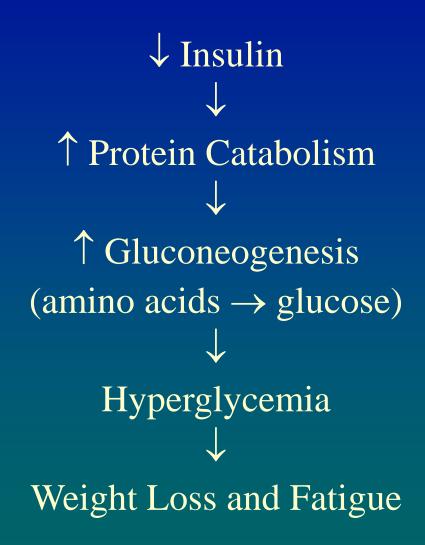


- 1 Insulin after a meal:
 - ☐Stimulates storage of glucose as glycogen
 - □Inhibits gluconeogenesis
 - ☐Enhances fat deposition in adipose tissue
 - □Increases protein synthesis

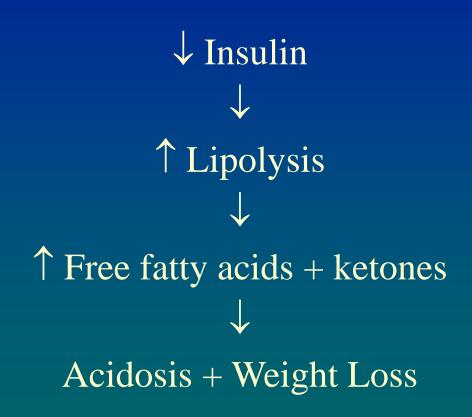
- □ Fasting state
 - Counter-regulatory hormones (especially glucagon) stimulate glycogen → glucose
- ☐ When glucose unavailable during fasting state
 - Lipolysis (fat breakdown)
 - Proteolysis (amino acid breakdown)

ALTERED CHO METABOLISM




↓ Polyuria*
(and electrolyte imbalance)
↓
Polydipsia*

* Hallmark symptoms of diabetes


ALTERED PROTEIN METABOLISM

ALTERED PROTEIN METABOLISM

ALTERED FAT METABOLISM

Type 1 Diabetes Mellitus

- □Formerly known as "juvenile onset" or "insulin dependent" diabetes
- ☐ Most often occurs in people under 30 years of age
- □Peak onset between ages 11 and 13

Type 1 Diabetes Mellitus Etiology and Pathophysiology

- **Progressive destruction of pancreatic β cells**
- Autoantibodies cause a reduction of 80% to 90% of normal β cell function before manifestations occur

Type 1 Diabetes Mellitus Etiology and Pathophysiology

- Causes:
 - ☐ Genetic predisposition
 - **Exposure** to a virus

Type 1 Diabetes Mellitus Onset of Disease

- Manifestations develop when the pancreas can no longer produce insulin
 - Rapid onset of symptoms
 - Present at ER with impending or actual ketoacidosis

Type 1 Diabetes Mellitus Onset of Disease

- **□**Weight loss
- **□Polydipsia** (excessive thirst)
- □Polyuria (frequent urination)
- □Polyphagia (excessive hunger)
- **□**Weakness and fatigue
- **□**Ketoacidosis

Type 1 Diabetes Mellitus Onset of Disease

- Diabetic ketoacidosis (DKA)
 - □Life-threatening complication of Type 1 DM
 - **□Occurs** in the absence of insulin
 - □ Results in metabolic acidosis

Clinical Manifestations Type 1 Diabetes Mellitus

- **□**Polyuria
- **□**Polydipsia
- **□**Polyphagia
- **□Weight loss**

Type 2 Diabetes Mellitus

- Accounts for 90% of patients with diabetes
- Usually occurs in people over 40 years old
- 80-90% of patients are overweight

Type 2 Diabetes Mellitus Etiology and Pathophysiology

- Insulin resistance
 - Body tissues do not respond to insulin
 - Results in hyperglycemia
- <u>Decreased</u> (but not absent) production of insulin

Type 2 Diabetes Mellitus Onset of Disease

- **□Gradual** onset
- □Person may go many years with undetected hyperglycemia
- ☐Marked hyperglycemia (27.6 55.1 mmol/L)

Clinical Manifestations Type 2 Diabetes Mellitus

- **□**Non-specific symptoms
- **□** Fatigue
- □ Recurrent infections
- □Prolonged wound healing
- **□Visual changes**

Gestational Diabetes

- **□** Develops during pregnancy
- □ Detected at 24 to 28 weeks of gestation
- ☐ Associated with ↑ risk for cesarean delivery, perinatal death, and neonatal complications

Secondary Diabetes

- Results from another medical condition or due to the treatment of a medical condition that causes abnormal blood glucose levels
 - Cushing syndrome (e.g. steroid administration)
 - **□**Hyperthyroidism
 - □ Parenteral nutrition

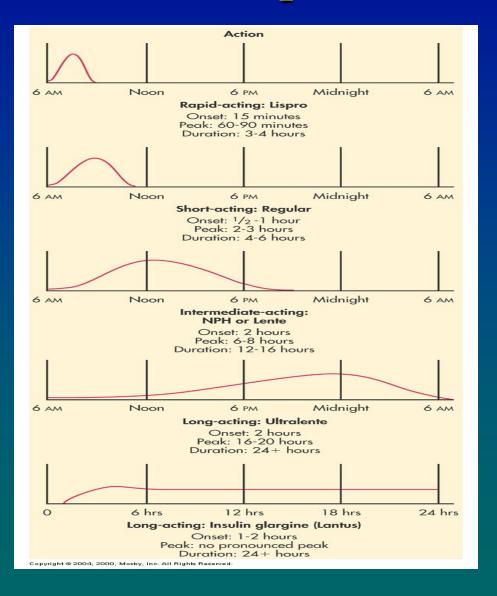
Diabetes Mellitus Diagnostic Studies

- Fasting plasma glucose level >7 mmol/L
- Random plasma glucose level > 11.1 mmol/L plus symptoms
- Impaired Glucose Tolerance Test patient is "challenged" with glucose load. Patient should be able to maintain normal BG. Diabetes if BG > 11.1 mmol/L 2 hr post challenge
- Hemoglobin A1C test (glycosylated Hgb)
 - Reflects amount of glucose attached to Hgb over life of RBC
 - Indicates overall glucose control over previous 90 120 days

Diabetes MellitusCollaborative Care

- Goals of diabetes management:
 - □ Reduce symptoms
 - **□**Promote well-being
 - □ Prevent acute complications
 - □ Delay onset and progression of long-term complications

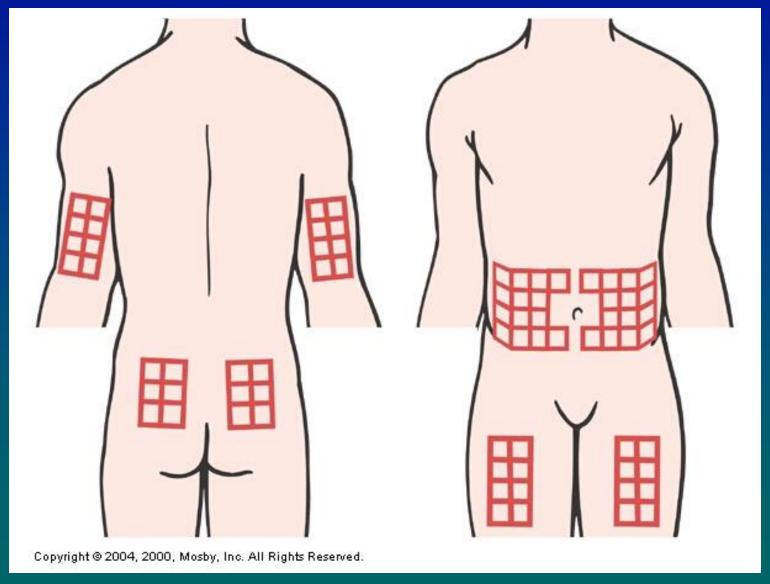
Diabetes Mellitus Collaborative Care


- □ Patient teaching
- □Nutritional therapy
- **□**Drug therapy
- **Exercise**
- **□**Self-monitoring of blood glucose

- Exogenous insulin:
 - □ Required for all patient with type 1 DM
 - □ Prescribed for the patient with type 2 DM who cannot control blood glucose by other means

- Types of insulin
 - Human insulin
 - ☐Most widely used type of insulin
 - **□**Cost-effective
 - □↓ Likelihood of allergic reaction

- Types of insulin
 - Insulins differ in regard to onset, peak action, and duration
 - Different types of insulin may be used for combination therapy


Insulin Preparations

- Types of insulin
 - Rapid-acting: Lispro
 - -*Short-acting: Regular
 - -*Intermediate-acting: NPH or Lente
 - Long-acting: Ultralente, Lantus

- Insulin
 - Cannot be taken orally
 - Self-administered by SQ injection

Injection Sites

- Insulin delivery methods
 - Ordinary SQ injection
 - Insulin pen
 - preloaded with insulin; "dial" the dose
 - Insulin pump
 - Continuous "basal" infusion. At mealtime, user programs to deliver "bolus" infusion that correlates with amount of CHOs ingested. Allows tight control and greater flexibility with meals and activity

- Insulin delivery methods
 - Intensive insulin therapy
 - Multiple daily injects and frequent SMBG

Diabetes Mellitus Drug Therapy: Insulin

- Problems with insulin therapy
 - Hypoglycemia (BS < 3.9 mmol/L)
 - Due to too much insulin in relation to glucose availability

Diabetes Mellitus Drug Therapy: Insulin

- Problems with insulin therapy
 - Hypoglycemia
 - Allergic reactions
 - Local inflammatory reaction
 - Lipodystrophy
 - Hypertrophy or atrophy of SQ tissue r/t frequent use of same injection site. Less common now b/c pork and beef insulin infrequently used

Diabetes Mellitus Drug Therapy: Insulin

- Problems with insulin therapy
 - Somogyi effect
 - Due to too much insulin
 - Early morning hypoglycemia followed by hyperglycemia (d/t stimulation of counter-regulatory hormones)
 - Dawn Phenomenon
 - Hyperglycemia secondary to nighttime release of growth hormone (a counter-regulatory hormone) that cause \uparrow BS in early am (5 6 am).
 - Rx with insulin that will peak at that time (intermediate at 10 pm)

Diabetes Mellitus Drug Therapy: Oral Agents

- Not insulin
- Work to improve the mechanisms in which insulin and glucose are produced and used by the body

Diabetes Mellitus Drug Therapy: Oral Agents

- Increase insulin production by pancreas
- Reduce glucose production by liver
- Enhance insulin sensitivity and glucose transport into cell
- Slow absorption of carbohydrate in intestine

- Within the context of an overall healthy eating plan, a person with diabetes can eat the same foods as a person without diabetes
- Overall goal of nutritional therapy
 - Assist people to make changes in nutrition and exercise habits that will lead to improved metabolic control

• Type 1 DM

Diet based on usual food intake, balanced with insulin and exercise patterns

Type 2 DM

- Emphasis placed on achieving glucose, lipid, and blood pressure goals
- Calorie reduction

- Food composition
 - Meal plan developed with dietitian
 - Nutritionally balanced
 - Does not prohibit the consumption of any one type of food

- Alcohol
 - High in calories
 - Promotes hypertriglyceridemia
 - Can cause severe hypoglycemia b/c inhibits glucose production by liver

Exercise

- Essential part of diabetes management
- Increases insulin sensitivity
- Lowers blood glucose levels
- Decreases insulin resistance

Exercise

- Take small carbohydrate snacks Q 30 min during exercise to prevent hypoglycemia
- Exercise after meals
- Exercise plans should be individualized
- Monitor blood glucose levels before, during, and after exercise

Diabetes Mellitus Monitoring Blood Glucose

- Self-monitoring of blood glucose (SMBG)
 - Allows self-management decisions regarding diet, exercise, and medication
 - Important for detecting episodic hyperglycemia and hypoglycemia
 - Patient education is crucial

Diabetes Mellitus Pancreas Transplantation

• Used for patients with type 1 DM who have end-stage renal disease and who have had or plan to have a kidney transplant

- Eliminates the need for exogenous insulin
- Can also eliminate hypoglycemia and hyperglycemia

Diabetes Mellitus Nursing Management Nursing Diagnoses

- See NCP, pp. 1286-1287
- Ineffective therapeutic regimen management
- Fatigue
- Risk for infection
- Powerlessness

Diabetes Mellitus Nursing Management: Planning

- Overall goals:
 - Active patient participation
 - No episodes of acute hyperglycemic emergencies or hypoglycemia
 - Maintain normal blood glucose levels
 - Prevent chronic complications
 - Lifestyle adjustment with minimal stress

Diabetes Mellitus Nursing Management Nursing Implementation

- Health Promotion
 - Identify those at risk
 - Routine screening for overweight adults over age 45
 - Diabetes prevention (weight control)

Diabetes Mellitus Nursing Management Nursing Implementation

- Ambulatory and Home Care
 - Insulin therapy and oral agents
 - Personal hygiene
 - Medical identification and travel
 - Patient and family teaching

Diabetes Mellitus Nursing Management

- Stress Management
 - Emotional and physiological stress increase $BG \rightarrow hyperglycemia$
 - Often need more insulin to maintain control
 (Type II diabetics normally controlled by
 OA may temporarily need insulin)

Diabetes Mellitus Nursing Management

- Stress Management
 - When ill
 - Continue regular diet and ↑ intake of non-caloric fluids
 - Take insulin/OA as prescribed and check BG Q4h
 - If BG > 13.3 mmol/L, check urine for ketones and report moderate to high ketone levels

Diabetes Mellitus Nursing Management

- Stress Management
 - When ill and unable to eat usual intake:
 - Continue insulin/OA (likely to be hyperglycemic even if not eating)
 - Supplement food with CHO-containing food
 - Closely monitor BG levels

Diabetes Mellitus Nursing Management Nursing Implementation

- Acute Complications
 - Hypoglycemia
 - Diabetic ketoacidosis
 - Hyperosmolar hyperglycemic nonketotic syndrome

- Hypoglycemia
 - Too much insulin (or oral agents) in relation to glucose availability
 - Usually coincides with peak action of insulin/OA
- Brain requires constant glucose supply thus hypoglycemia affects mental function

- S/S hypoglycemia
 - S/S of brain glucose deprivation (CNS symptoms)
 - Confusion, irritability
 - S/S of SNS stimulation (anxiety, tachycardia, tremors)
 - Diaphoreses, tremor, hunger, weakness, visual disturbances
 - If untreated \rightarrow LOC, seizures, coma, death
- Hypoglycemic unawareness
 - autonomic neuropathy interferes with counterregulatory hormones
 - Patients on β-blockers

- Treatment for hypoglycemia
 - Ingest simple CHO (fruit juice, soft drink),
 or commercial gel or tablet
 - Avoid sweets with fat (slows sugar absorption)
 - − Repeat Q15min until < 3.9 mmol/L</p>
 - Then eat usual meal snack or meal and recheck

- Treatment for hypoglycemia if not alert enough to swallow
 - Glucagon 1m IM or SQ (glycogen \rightarrow glucose)
 - Then complex CHO when alert

Acute Complication: DKA

- Diabetic Ketoacidosis (DKA): BG > 20 30 mmol/L
 - Usually in Type 1 diabetes; can occur in Type 2
 - Causes:
 - Infection**
 - Stressors (physiological, psychological)
 - Stopping insulin
 - Undiagnosed diabetes

Diabetes Mellitus Acute Complication: DKA

Pathophysiology

- Continuation of effects of insulin deficiency
 - Severe metabolic acidosis
 - Severe dehydration → shock
 - Severe electrolyte imbalance (↓ Na, ↓ K, ↓ Cl, ↓ Mg, ↓ PO4)

Clinical Manifestations

- S/S dehydration (\uparrow HR; \downarrow BP, poor turgor, dry MM),
- Kussmauls breathing (d/t metabolic acidosis)
- Fruity breath (d/t acetone)
- Abdominal pain, N & V, cardiac dysrhythmias

Diabetes Mellitus Acute Complication: DKA

- Treatment
 - Replace fluid and electrolytes
 - Insulin (First IV bolus, then infusion)
 - ID and correct precipitating cause (e.g., infection, etc.)
 - Teaching re: diabetes control

Diabetes Mellitus Acute Complication: HHNS

- BG > 44.5 mmol/L
- Occurs in Type II diabetics (often elderly)
- Causes: similar to DKA
- Pathophysiology
 - Similar to DKA, <u>except</u> there is enough insulin to prevent ketosis (fat breakdown), but not enough to prevent hyperglycemia
 - Extreme hyperglycemia causes intracellular dehydration d/t movement of water from cells

Diabetes Mellitus Acute Complication: HHNS

- Clincial manifestation dehydration, weakness, polyuria, polydipsia, somnolence, seizures, coma
 - Treatment
 - Re-hydrate
 - Insulin IV
 - Monitor closely

- Angiopathy
 - > Macrovascular
 - > Microvascular
- Retinopathy
- Nephropathy

- Neuropathy
- Skin problems
- Infection

- Angiopathy blood vessel disease
 - > Macrovascular
 - **▶**Disease of large and mid-sized vessels
 - > Related to altered lipid metabolism of diabetes
 - > PVD
 - > Cerebrovascular
 - > Cardiovascular
 - > Microvascular
 - **▶** Due to thickening of small vessel membranes

- >Microvascular
 - > Retinopathy
 - >Leading cause of new blindness
 - **>**Vessel occlusion → aneurysms → leakage of fluid
 - ➤ Vessel occlusion → new vessel growth → hemorrhage, retinal detachment

- >Microvascular
 - **Nephropathy**
 - **▶**Damage to vessels supplying glomeruli
 - >Leading cause of ESRD

- Microvascular
 - **Neuropathy**
 - >Sensory Neuropathy
 - **▶**Loss of sensation, abnormal sensation, pain of hands and/or feet
 - ➤ Can progress to partial or complete loss of sensitivity to touch and temperature → high risk of injury without pain
 - >Rx is glucose control

- Microvascular
 - **Neuropathy**
 - >Autonomic neuropathy. Examples:
 - >Hypoglycemic unawareness
 - >Silent MI
 - >Erectile dysfunction, decreased libido
 - **▶**Neurogenic bladder → urine retention

- Diabetic Foot
 - Macrovascular disease → PVD (↓ supply of oxygen, WBCs, nutrients)
 - Sensory neuropathy \rightarrow injury
 - Teach prevention of ulceration/injury
 - See Table 47-21

- Infection
 - Immune deficiencies
 - Delayed detection d/t sensory neuropathy
 - Decreased circulation delays or prevents immune response